К выбору прототипа для изучения раздела: "индуктивное моделирование динамических систем"



Скачать 86.96 Kb.
Дата15.06.2016
Размер86.96 Kb.
К ВЫБОРУ ПРОТОТИПА ДЛЯ ИЗУЧЕНИЯ РАЗДЕЛА:
"ИНДУКТИВНОЕ МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКИХ СИСТЕМ"

Панченко В.М., Закорюкин В.Б., Шорохов М.И.

(Московский государственный институт радиотехники, электроники и автоматики)
В процессе познавательной деятельности по изучению динамических процессов и систем на структуралистском уровне теории систем уделяется большое внимание. При физическом моделировании стало классикой изучение электродинамических процессов и применение электрических аналогов для моделирования объектов различной природы.

Данная работа предпринимается с целью выбора различных объектов наблюдений для изучения в теории систем раздела, связанного с понятием индуктивного моделирования систем. Основные требования при выборе прототипа следующие: простота и понятность конструктивного исполнения, сводимость к кибернетической системе описания, возможность формирования многоплановых индивидуальных занятий для самостоятельных и курсовых работ, возможность интерпретации модели объекта наблюдений в форме семиуровневой позиционной системы представления по Р. Калману, П. Фалбу, и М. Арбибу, утвердившейся при описании динамических объектов в качестве общепризнанной парадигмы.

Такая постановка задачи, при которой индуктивное моделирование связывается с конкретным предметно изучаемым динамическим объектом, определяется также современными возможностями мультимедийной поддержки при компьютеризации учебного процесса.

Объект и модель. Задача формирования модели объекта наблюдений




Основы общей методологии системного анализа составляют различные иерархии архитектур системологии, на пространстве которых формируется субъектом многообразия кибернетических моделей объекта и описания информационных процессов [1 – 4].

Ключевой проблемой в решении проблем является организация процесса построения модели объекта наблюдений субъектом, то есть преодоление «стены» неопределенности, связанной с переходом от проблемы к решаемым с помощью моделей задачам. Задачный принцип – естественная основа подхода к решению любой проблемы. При этом возникают новые проблемы, связанные с доказательством степени релевантности решений, полученных на модели.

Ошибка подмены целей, когда решение проблемы заменяется решением задачи, субъективно сглаживается путем использования метода «спора моделей». Эффект положительный, если построенные модели одной и той же проблемы приводят к близким по результатам решениям.

Алгоритм построения модели объекта можно представить в форме общего правила последовательности действий субъекта: выделение объекта из среды – определение проблемы – структуризация проблемы в форму системы вопросов, конкретизирующих задачи субъекта – формирование модели для решения задач на основе системного подхода и системообразующих технологий – системный анализ допустимости решений – моделирование и поиск оптимального управления объектом наблюдений – обратная связь (проверка на релевантность) и корректировка моделей принятия решений. Ключевую основу алгоритма интеллектуальной деятельности образует этап структуризации проблемы в систему вопросов, конкретизирующих задачи субъекта.

Если в качестве «тела» генератора вопросов, своеобразного универсального напоминателя и побудителя интеллекта к деятельности, рассматривать, например, рациональные и эмпирические комплексы архитектуры структуралистического направления системологии [4, c.11], то основная задача сводится к стимуляции процессов самогенерации вопросов обучаемым при поиске решения проблемы. Обучаемые старших курсов имеют достаточный запас остаточных знаний, умений и навыков, чтобы стимулировать процесс самогенерации вопросов, содействующих проявлению технически грамотного мышления на уровне интеллектуального (творческого и познавательного) потенциала личности, способствующего к оригинальному решению сложных проблем в области своей профессиональной деятельности.

Объект наблюдений, исследований, проектирования



1.1.Принцип относительности и системная парадигма


Объект как система и система как множество объектов – это определенная конкретизация взаимодействующих дискретностей реально наблюдаемых и мыслительных миров, состоящих из объектов, совокупности которых в свою очередь, образуют объекты, обладающие новыми системными свойствами.

Согласно системной парадигме, любой объект – это система, которая может быть элементом суперсистемы (надобъектом, метаобъектом, суперобъектом), и в свою очередь состоять из подсистем (подобъектах).

При взаимодействии объектов, объект любого уровня абстрагирования или конкретизации проявляет себя в форме системы, образуемой единством трех составляющих: предмета, сущности и явления.

Объектом наблюдений является предмет, представленный конструктивно преобразователем сигналов магнитно-электромеханического типа, см. Рис. 1 [4, c.84-86].

Рис. 1. Объект наблюдений – преобразователь сигналов магнитно-электромеханического типа.

В магнитопроводе размером а  b  h имеются четыре отверстия {1, 2, 3, 4} диаметром d, в которые уложены обмотки W1=W13 и W2=W24.

При усилии F(t)=0 в идеальном случае имеем магнитные потоки Ф12241334. Магнитный поток через вторичную обмотку W24 равен нулю. Следовательно, U2=U23(t)=0, т.к. Ф2324–Ф12=0. В противном случае, если F0, U23(t)=f(23).

Объектом исследований выступают явления, наблюдаемые в преобразователе при проведении единичного эксперимента, осуществляемого по определенной программе отдельных опытов (испытаний). При этом преобразователь рассматривается как кибернетическая система, то есть система типа «вход-выход», внутреннее состояние который - «черный ящик».

Объектом проектирования является проблема формирования моделей объекта исследований. В основе процесса моделирования сущности лежат накопленные в соответствующих предметных областях знания. Получается, что объект наблюдений выступает в роли суперсистемы непроявленного множества свойств. Объект исследований проявляет для субъекта через каналы наблюдений часть этих свойств и является в этом смысле исходной эмпирической системой данных. Объект проектирования определяется множеством возможных порождаемых моделей – систем абстрагирования, формализации и интерпретации наблюдаемых явлений. На лицо системная парадигма для множества объектов.

1.2.Объект исследований. Программа единичного эксперимента.


Объект исследований, идентифицирующей объект наблюдений, (физический объект) представлен множеством кадров наблюдений, отснятых с экрана двухлучевого осциллоскопа. На Рис. 2 приведена наблюдаемая субъектом система двух сигналов.

Рис. 2. Система двух сигналов как объект наблюдений.

Визуальному образ сигнала дает возможность приступить к его идентификации, для чего вводятся пространственный и временной базисы:



– база наблюдений в пространстве (параметры сетки на экране осциллографа);

– база наблюдения по времени;

T1 – период квазистационарного процесса.

Описание наблюдаемой системы на информационном уровне выглядит как:

V1(t) – входная переменная;

V2(t) – выходная переменная;

V1 m – амплитуда переменной.

Для возможности распознавания и количественной оценки параметров сигнала с использованием современных вычислительных средств необходимо от непрерывного временного базиса перейти к дискретному, то есть ввести параметр t – шаг дискретизации переменной.

В предлагаемых студентам на кафедре "Интеллектуальные технологии и системы" Московского института радиотехники, электроники и автоматики (МИРЭА) лабораторных работах по данной теме каждый вариант определяется системой двух сигналов, форма которых определяется симметрией 3-го рода, то есть

.

Интервал дискретизации сигнала равен



.

С учетом симметрии формы приведятся значения сигнала на интервале [0; 0,5T], а число интервалов принято равным 2n на весь период Т. Варианты отличаются значением установившихся факторов Fс и R. Значения данных сигналов (xiyi) нормированы. Для восстановления исходной зависимости функций x(t) и y(t) можно воспользоваться эффективными значениями реальных сигналов (XЭ; YЭ) и их нормированных аналогов (XЭН; YЭН), составив соответствующую пропорцию. Из пропорций определены истинные значения Xmax и Ymax , а также коэффициенты нормирования ||Xm|| и ||Ym|| по всей выборке экспериментальных данных. Для системы данных единичного эксперимента таким образом открывается путь к построению поверхностей отклика, определяемых изменением параметров Fс и R, то есть к определению метасистем данных, когда параметры структурированных данных становятся переменными в системах метаданных [1].

Объект проектирования

Формирование системологического мышления на уровне языка, моделей и методов архитектуры рационально-эмпирических комплексов, изучаемых в методологических основах теории систем [4], ведется в несколько этапов.

На первом этапе обучаемый формирует решение конкретной проблемы, то есть строит в условиях курсовой работы допустимые модели решения задач, которые по его мнению, ведут к решению проблемы. В действительности, решение проблемы «объекта наблюдений» заменяются решением задач, связанных с «объектом исследований», представленном в форме структурированных данных, полученных по каналам наблюдений в результате проведения конкретного единичного эксперимента.

В данном задании на КПР типовая основа «спора моделей» связана: 1) с методами и моделями численного интегрирования и дифференцирования сигналов; 2) с методами и моделями тригонометрической экстраполяции; 3) с построением моделей, определяемых причинно-следственными связями и зависимостями, вытекающими из знаний физической сущности информационных процессов в объекте наблюдений (в преобразователе сигналов).

Система рациональных моделей обработки данных сигналов приведена в [4, c.90], схема вычислительного процесса тригонометрической интерполяции приведена в [5, c.13].

В результате решения предложенных задач обучаемый имеет полное представление о конкретных моделях и методах, связанных с обработкой данных эксперимента, то есть о проблемах «объекта исследований».

На втором этапе в качестве тренажера, способствующего усвоению языка моделей и методов системологии и конструктивной теории систем, выступает интерпретация конкретных результатов с позиций знаний, полученных при изучении методологических основ теории систем.

Здесь необходимо составить системологическое описание решенных на первом этапе задач.

Операции абстрагирования и конкретизации, структуризации и метаоперации, системологические технологии и масочные решения по обработке данных необходимо отразить средствами языка, моделей и методов конструктивной теории систем.

Заключение

Идея использования средств для стимулирования и развития творческого мышления известна нам со времен Сократа.

Современная системология Клира [1] ставит проблему автоматизации решения системных задач, а, по существу, ставит проблему создания экспертной системы (УРСЗ), специализирующейся на идее диалога через посредника – ЭВМ.

Процесс самогенерации вопросов (внутреннего диалога) опирается, безусловно, на остаточные знания, сформированные в процессе профессиональной деятельности субъекта. При этом интуиция, эвристики и другие основы творчества также нуждаются в тренировках, как и память, связанная с познавательной активностью и расширением остаточных знаний [6, 7].

Данный подход к процессу обучения указывает пути к решению проблемы диалога, стимулируемого изнутри и извне. Построение процесса продвижения в познании с оглядкой на междисциплинарные принципы системологии направлен на развитие и повышение творческого потенциала личности, на стимуляцию и самостоятельный поиск решения проблем.

Практическая полезность и рекомендации по использованию в учебных целях подобного устройства проверена учебной практикой и отражена в учебно-методических разработках выполненных в Московском институте радиотехники, электроники и автоматики на кафедре "Интеллектуальные технологии и системы" [4, 5].



Список литературы

  1. Клир Дж. Системология. Автоматизация решения системных задач. – М.: Радио и связь, 1990–540с.

  2. Кухтенко А.И. Систем общая теория/ Энциклопедия кибернетики. Том 2– Киев : Главная редакция УСЭ, 1974.– 335–339.

  3. Кузин Л.Т. Основы кибернетики (в двух томах), т.2. Основы кибернетических моделей. Учебное пособие для ВУЗов. – М.: Энергия, 1979/1991 – 584с.

  4. Панченко В.М. Теория систем. Методологические основы: Учебное пособие. – М.: МИРЭА, 1999. – 96с.

  5. Панов А.В. Теория принятия решений. Анализ и обработка данных единичного эксперимента/ Методические указания М.: МИРЭА, 2001. – 24с.

  6. Акофф Р. Искусство решения проблем: Пер. с англ. М.: Мир, 1982.–224с.

  7. Мюллер И. Эвристические методы в инженерных разработках. Пер. с нем. – М.: Радио и связь, 1984. – 144с.


База данных защищена авторским правом ©refedu.ru 2016
обратиться к администрации

    Главная страница